‘ ‘ channable

Parallel Streaming ‘

Yorick Sijsling & Joris Burgers
June 5, 2023 .'

Channable

— Channable provides tools to process product data

— For example, customers can connect their webshop, and
configure the tool to generate Google ads based on their '
product data

— Team of 20 mostly-Haskell developers (we're hiring[1])

‘ channable

Motivation

— Users can specify rules to process their data

— Rule processing engine handles 1.7 million items per second

— Jobs were initially single threaded: '
Simple

Parallelism from running multiple jobs

— Easier to optimize

Efficient use of resources (no overhead from multithreading)

— Good for high overall throughput

— Some jobs are just too big, taking minutes or even hours

— Task: add in-job parallelism!
— We also wrote a blog[2] about this
‘channable ‘

Overview

— Rationale for streaming
— Quick introduction to conduit

Adding parallelism '

Parallel aggregations
— Running conduits with parallelism

— Zipping conduits with parallelism

‘ channable

Rule processing ‘

What's in a job

The rule processing engine runs different types of jobs.
We'll focus on one type that:

— Starts with a data set in memory (akin to [Item])
— Runs a bunch of actions

— Ends with a data set in memory

‘ channable

Storing items

We don't actually use [Item] as an in-memory data set:
— Can't do efficient indexing or slicing
— Bad for garbage collection (GC) '

Assume that StoredItems is some efficient, GC-friendly way to
store items, for instance using:

— Unboxed Vectors
— Vectors in compact regions (see our blog post[3])
— Or serialized data on disk, as a memory-mapped file

evalActionsJob :: [Action] -> StoredItems -> _ StoredItems

‘ channable

Evaluating actions

Actions come in the form of an AST:

data Action
= Map Expression
| Filter Expression '
| SortOn Expresssion
| DeduplicateOn Expresssion

evalAction :: Action -> [Item] -> _ [Item]

‘ channable

Evaluating actions

Creating a StoredItems after each action is too expensive.

When possible, we want to use streaming

— Each Itemis sent through multiple actions, before starting on '
the next Item

— This limits the amount of live data outside of StoredItems

— Good fit for chains of map and filter

‘ channable

Evaluating actions

Laziness allows [Item] to work as a stream.
Each Itemis only produced when the consumer needs it.

We use a dedicated library conduit[4] instead, to get several '
benefits:

— Interleaving I0 between items. (yield an item, do some IO,
yield next item, ...)

— A nice streaming-specific interface
— (Hopefully) more reliable stream fusion

evalAction :: Action -> ConduitT Item Item IO ()

‘ channable

Conduits '

Conduits

The ConduitT type is the core of the conduit library.

A ConduitT i o m risastream processor:
It consumes a stream of values of type i '

It produces a stream of values of type o

It can run effects in monad m

At the end, it produces a single r

‘ channable

Conduits

> runConduit (C.yieldMany [1,2,3] .| C.map (*2) .| C.sum)
12

‘ channable

Conduits

> runConduit (C.yieldMany [1,2,3] .| C.map (*2) .| C.sum)
12

C.yieldMany :: Monad m => [0] -> ConduitT i o m () '
C.map :: Monad m => (i -> 0) -> ConduitT i o m ()
C.sum :: Monad m => ConduitT Int o m Int

‘ channable

Conduits

> runConduit (C.yieldMany [1,2,3] .| C.map (*2) .| C.sum)
12

C.yieldMany :: Monad m => [0] -> ConduitT i o m () '
C.map :: Monad m => (i -> 0) -> ConduitT i o m ()
C.sum :: Monad m => ConduitT Int o m Int

(.|) :: Monad m => ConduitT a b m ()
-> ConduitT b c m r
-> ConduitT a cmr
runConduit :: Monad m => ConduitT () Void mr -> m r

‘ channable ‘

Adding parallelism '

Streams of work and values

We use a mixed stream of values and parallel work units.
Stream values use this type:

data WorkOr a = WOValue a | WOWork (I0 ()) | WONothingYet

‘ channable

Streams of work and values

We use a mixed stream of values and parallel work units.
Stream values use this type:

data WorkOr a = WOValue a | WOWork (I0 ()) | WONothingYet

— For example, ConduitT () (WorkOr Item) IO () produces both '
parallel work units and items

— The 10 () is a parallel work unit that:

— Can run independent of everything else, in any order
— Should be run at most once

— If a conduit has to wait for work to be completed, it can

yield a WONothingYet
‘ channable ‘

Streams of work and values

We use a mixed stream of values and parallel work units.
Stream values use this type:

data WorkOr a = WOValue a | WOWork (I0 ()) | WONothingYet
— We don't need a separate task queue '

— Work is produced on demand

— Supports deterministic ordering of values

‘ channable

Example: Parallel streams

type ParallelStream = ConduitT () Item I0 ()
yieldParallel :: ChunkSize -> [Item] -> ConduitT i ParallelStream I0 ()

sinkItemsInParallel :: ConduitT ParallelStream (WorkOr o) IO [Item] '

This sinkItemsInParallel function:
— Converts each ParallelStream to a WOWork that stores the output
— Main conduit waits on all outputs and concatenates

‘ channable ‘

Aggregations ‘

Aggregations

deduplicate :: Ord key => (Item -> key) -> [Item] -> [Item]

‘ channable

Aggregations

deduplicate :: Ord key => (Item -> key) -> [Item] -> [Item]

Deduplication deduplicates on the key.

> deduplicate fst [(6, "a"), (3, "b"), (2, "c¢"), (5, "d"), (2, "e")]
[(2, ”C"), (3, "b”)’ (5’ ”d”), (6, ”a")]

For any duplicate key, takes the leftmost item.

‘ channable

Aggregations

Arregations can be generalized

aggregation
: Ord key

=> (Item -> Item -> [Item]) '

-> (Item -> key)

-> [Item]

-> [Item]
We only need to implement one (parallel) aggregation function
deduplication = aggregation (\1 _ -> [1])
sort = aggregation (\1 r -> [1, rl)
deduplicateRemove = aggregation (_ _ -> [1)
sum = aggregation (\1 r -> [1 + r])

deduplicateRemove has a bug, can you find it?
‘ channable

Parallel aggregations

Parallel deduplication can be implemented as a merge-sort.
1. Split the input in 2 blocks

2. Sort the individual blocks '

3. Deduplicate the sorted blocks, using the provided function
for any key collisions

4. Join the sorted, deduplicated blocks

‘ channable

Parallel aggregations

type Block = Vector Item

:: Mvar Block
-> ParallelStream
-> WorkOr a
processBlock resultPlaceholder stream = WOWork $ do
result <- sort stream >>= deduplicate
putMVar resultPlaceholder result

processBlock '

‘ channable

Parallel aggregations

joinBlocks
:: Mvar Block
-> Block
-> Block '
-> WorkOr a
joinBlocks resultPlaceholder leftBlock rightBlock = WOWork $ do

result <- join leftBlock rightBlock
putMVar resultPlaceholder result

‘ channable

Parallel aggregations

~
2. Produce work for block 1 < 1. Pull
2 1 3. Produce D
4 2 N
3 sort 3 el y 4. Pull
1 4 1 >
2 6. Produce D
3
4
5 < 7. Pull
5 2 W 9. Produce [:]
g 3 join
3 < N
>
5. Produce work for block 2 8. Join block |11. Result are already computed
__land2

‘ channable

Parallel aggregations

Summary
— Aggregations can be implemented as a parallel merge-sort

— We produce intermediate work units, only producing items '
after all work has completed

— Work is produced on demand

‘ channable

Running the Conduit ‘

Running the Conduit

The ConduitT type is the core of the conduit library.

‘ channable

Running the Conduit

The ConduitT type is the core of the conduit library.

A ConduitT i o m ris a stream processor:
— It consumes a stream of values of type i

— It produces a stream of values of type o
— It can run effects in monadm

— At the end, it produces a single r

‘ channable

What’s in a Conduit?

Simplified answer: a Pipe
A Pipe represents the current state of the Conduit

‘ channable

What’s in a Conduit?

Simplified answer: a Pipe
A Pipe represents the current state of the Conduit

data Pipe i om r

= HaveOQutput (Pipe i omr) o '
| NeedInput (i -> Pipe i o m r)
| Done r

| PipeM (m (Pipe i o m r))

runPipe :: Monad m => Pipe () Void mr -> m r
runPipe (HaveOutput _ o) = absurd o

runPipe (NeedInput c) = runPipe (c ())
runPipe (Done r) = return r

runPipe (PipeM mp) = mp >>= runPipe

‘ channable

Running the Conduit in Parallel

Defining our own runConduit function
runConduitWithWork :: ConduitT () (WorkOr Void) I0 r -> IO r

‘ channable

Running the Conduit in Parallel

Defining our own runConduit function
runConduitWithWork :: ConduitT () (WorkOr Void) I0 r -> IO r

We need one more case for runPipe: '

runPipe :: Pipe () (WorkOr Void) IO r -> I0 r

runPipe (HaveOutput _ (WOValue o)) = absurd o

runPipe (HaveOutput pipe (WOWork w)) = -- Handle work
runPipe (NeedInput c) = runPipe (c ())

runPipe (Done r) = return r

runPipe (PipeM mp) = mp >>= runPipe

‘ channable

Running the Conduit in Parallel

How to parallelize runPipe?

1. Put the Pipe in an Mvar.
2. Any thread can run the pipe until it finds a WoWork '

3. Put the remaining Pipe back and evaluate the Wowork

Running the pipe should be cheap, as it happens in the critical
section.

‘ channable ‘

Running the Conduit in Parallel

runConduitWithWork
:: Int -> ConduitT () (WorkOr Void) IO r -> IO r
runConduitWithWork numThreads (ConduitT pipe) = do
pipeVar <- newMVar $ injectLeftovers $ pipe Done
threads <- replicateM numThreads $ Async.async $ runWorker pipeVar
snd <$> Async.waitAnyCancel threads

runWorker :: MVar (Pipe () (WorkOr Void) I0 r) -> I0 r
runWorker pipeVar = loop
where
-- Take the pipe variable, so that no one else can.
loop = takeMVar pipeVar >>= withPipe

withPipe = \case
HaveOutput pipe (WOWork w) -> do
-- Put back the (modified) pipe for someone else to use, because we have work to do!
putMvVar pipeVar pipe
W
loop
-- All the below is the same as 'runPipe' and is done within the critical section.
-- This includes evaluation of upstream and monadic effects in the conduit.
HaveOutput _ (WOValue o) -> absurd o
NeedInput ¢ -> withPipe (c ())
Done r -> pure r
PipeM mp -> mp >>= withPipe

‘ channable

How do we know if there is work?

2. Produce work for block 1 < 1. Pull
2 1 3. Produce D
4 2
3 3 jon < 4. Pull
1 4 1 >
2 6. Produce D
3
4
« 7. Pull
5 < = —
g 5 9. Produce D
3 L
2 o y 10. Pull
3 < N
5. Produce work for block 2 8. Join block |11. Result are already computed
__land2)

‘ channable

How do we know if there is work?

— Thread 1 deduplicates block 1
— Thread 2 deduplicates block 2

— Thread 3 cannot yet join the 2 blocks '
What happens if we pull the join before the input is ready?

‘ channable

How do we know if there is work?

— Thread 1 deduplicates block 1
— Thread 2 deduplicates block 2

— Thread 3 cannot yet join the 2 blocks '

What happens if we pull the join before the input is ready?
WONothingYet

‘ channable

How do we know if there is work?

— Thread 1 deduplicates block 1
— Thread 2 deduplicates block 2

— Thread 3 cannot yet join the 2 blocks '

What happens if we pull the join before the input is ready?
WONothingYet

We don't want to block.
— Makes time-measurement and core scheduling harder

— We cannot make explicit choices what work to forward

‘ channable

Zipping streams '

Zipping streams

‘ channable

LEFT
Has WONothingYet
Has WOWork
Has WONothingYet
Has a stream
Has WONothingYet
Is Done
Has WONothingYet

RIGHT
Has WONothingYet
Has Wowork
Has a stream
Has WONothingYet
|s Done

Forward a WONothingYet
Forward the Wowork
Forward the WOWork
Forward the stream
Forward a WONothingYet
Forward a WONothingYet
Forward a WONothingYet

Conclusion

Pros
— Simple, but covers most use cases
— Little overhead
— Evaluation strategy aligns with GHC runtime '

— Your custom runConduitWithWork could dynamically scale the
number of used cores

Cons

— Sometimes feels bolted on to conduit
— Components don't know if the downstream currently

prefers values, or more work I

‘ channable

References

— Haskell jobs at channable.
https://jobs.channable.com/o/haskell-software-engineer-3.

https://www.channable.com/tech/

— Parallel streaming in haskell, 2023. '
parallel-streaming-in-haskell-part-1-fast-efficient-fun.

— Lessons in managing haskell memory, 2020.
https://www.channable.com/tech/lessons-in-managing-haskell-memory

— Conduit.
https://hackage.haskell.org/package/conduit-1.3.5.

‘ channable

https://jobs.channable.com/o/haskell-software-engineer-3
https://www.channable.com/tech/parallel-streaming-in-haskell-part-1-fast-efficient-fun
https://www.channable.com/tech/parallel-streaming-in-haskell-part-1-fast-efficient-fun
https://www.channable.com/tech/lessons-in-managing-haskell-memory
https://hackage.haskell.org/package/conduit-1.3.5

‘ ‘ channable

Parallel Streaming ‘

Yorick Sijsling & Joris Burgers
June 5, 2023 .'

	Rule processing
	Conduits
	Adding parallelism
	Aggregations
	Running the Conduit
	Zipping streams
	Conclusion

