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Channable

– Channable provides tools to process product data

– For example, customers can connect their webshop, and
configure the tool to generate Google ads based on their
product data

– Team of 20 mostly-Haskell developers (we’re hiring[1])
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Motivation

– Users can specify rules to process their data

– Rule processing engine handles 1.7 million items per second

– Jobs were initially single threaded:
– Simple
– Parallelism from running multiple jobs
– Easier to optimize
– Efficient use of resources (no overhead frommultithreading)
– Good for high overall throughput

– Some jobs are just too big, taking minutes or even hours

– Task: add in-job parallelism!
– We also wrote a blog[2] about this
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Overview

– Rationale for streaming

– Quick introduction to conduit

– Adding parallelism

– Parallel aggregations

– Running conduits with parallelism

– Zipping conduits with parallelism
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Rule processing
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What’s in a job

The rule processing engine runs different types of jobs.
We’ll focus on one type that:
– Starts with a data set in memory (akin to [Item])

– Runs a bunch of actions

– Ends with a data set in memory
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Storing items

We don’t actually use [Item] as an in-memory data set:
– Can’t do efficient indexing or slicing
– Bad for garbage collection (GC)

Assume that StoredItems is some efficient, GC-friendly way to
store items, for instance using:
– Unboxed Vectors
– Vectors in compact regions (see our blog post[3])
– Or serialized data on disk, as a memory-mapped file

evalActionsJob :: [Action] -> StoredItems -> _ StoredItems
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Evaluating actions

Actions come in the form of an AST:
data Action
= Map Expression
| Filter Expression
| SortOn Expresssion
| DeduplicateOn Expresssion
...

evalAction :: Action -> [Item] -> _ [Item]
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Evaluating actions

Creating a StoredItems after each action is too expensive.

When possible, we want to use streaming
– Each Item is sent through multiple actions, before starting on
the next Item

– This limits the amount of live data outside of StoredItems

– Good fit for chains of map and filter
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Evaluating actions

Laziness allows [Item] to work as a stream.

Each Item is only produced when the consumer needs it.

We use a dedicated library conduit[4] instead, to get several
benefits:
– Interleaving IO between items. (yield an item, do some IO,
yield next item, ...)

– A nice streaming-specific interface
– (Hopefully) more reliable stream fusion

evalAction :: Action -> ConduitT Item Item IO ()
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Conduits
11
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Conduits
The ConduitT type is the core of the conduit library.

A ConduitT i o m r is a stream processor:
– It consumes a stream of values of type i

– It produces a stream of values of type o

– It can run effects in monad m

– At the end, it produces a single r
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Conduits

> runConduit (C.yieldMany [1,2,3] .| C.map (*2) .| C.sum)
12

C.yieldMany :: Monad m => [o] -> ConduitT i o m ()
C.map :: Monad m => (i -> o) -> ConduitT i o m ()
C.sum :: Monad m => ConduitT Int o m Int

(.|) :: Monad m => ConduitT a b m ()
-> ConduitT b c m r
-> ConduitT a c m r

runConduit :: Monad m => ConduitT () Void m r -> m r
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Conduits
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Adding parallelism
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Streams of work and values
We use amixed stream of values and parallel work units.
Stream values use this type:
data WorkOr a = WOValue a | WOWork (IO ()) | WONothingYet

– For example, ConduitT () (WorkOr Item) IO () produces both
parallel work units and items

– The IO () is a parallel work unit that:
– Can run independent of everything else, in any order
– Should be run at most once

– If a conduit has to wait for work to be completed, it can
yield a WONothingYet
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Streams of work and values
We use amixed stream of values and parallel work units.
Stream values use this type:
data WorkOr a = WOValue a | WOWork (IO ()) | WONothingYet

– We don’t need a separate task queue

– Work is produced on demand

– Supports deterministic ordering of values
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Example: Parallel streams

type ParallelStream = ConduitT () Item IO ()
yieldParallel :: ChunkSize -> [Item] -> ConduitT i ParallelStream IO ()
sinkItemsInParallel :: ConduitT ParallelStream (WorkOr o) IO [Item]

This sinkItemsInParallel function:
– Converts each ParallelStream to a WOWork that stores the output
– Main conduit waits on all outputs and concatenates
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Aggregations
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Aggregations

deduplicate :: Ord key => (Item -> key) -> [Item] -> [Item]

Deduplication deduplicates on the key.
> deduplicate fst [(6, "a"), (3, "b"), (2, "c"), (5, "d"), (2, "e")]
[(2, "c"), (3, "b"), (5, "d"), (6, "a")]

For any duplicate key, takes the leftmost item.
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Aggregations

Arregations can be generalized
aggregation
:: Ord key
=> (Item -> Item -> [Item])
-> (Item -> key)
-> [Item]
-> [Item]

We only need to implement one (parallel) aggregation function
deduplication = aggregation (\l _ -> [l])
sort = aggregation (\l r -> [l, r])
deduplicateRemove = aggregation (\_ _ -> [])
sum = aggregation (\l r -> [l + r])
deduplicateRemove has a bug, can you find it?
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Parallel aggregations

Parallel deduplication can be implemented as a merge-sort.
1. Split the input in 2 blocks

2. Sort the individual blocks

3. Deduplicate the sorted blocks, using the provided function
for any key collisions

4. Join the sorted, deduplicated blocks
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Parallel aggregations

type Block = Vector Item

processBlock
:: MVar Block
-> ParallelStream
-> WorkOr a

processBlock resultPlaceholder stream = WOWork $ do
result <- sort stream >>= deduplicate
putMVar resultPlaceholder result
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Parallel aggregations

joinBlocks
:: MVar Block
-> Block
-> Block
-> WorkOr a

joinBlocks resultPlaceholder leftBlock rightBlock = WOWork $ do
result <- join leftBlock rightBlock
putMVar resultPlaceholder result
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Parallel aggregations
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Parallel aggregations

Summary
– Aggregations can be implemented as a parallel merge-sort

– We produce intermediate work units, only producing items
after all work has completed

– Work is produced on demand
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Running the Conduit
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Running the Conduit

The ConduitT type is the core of the conduit library.

A ConduitT i o m r is a stream processor:
– It consumes a stream of values of type i

– It produces a stream of values of type o

– It can run effects in monad m

– At the end, it produces a single r
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What’s in a Conduit?
Simplified answer: a Pipe
A Pipe represents the current state of the Conduit

data Pipe i o m r
= HaveOutput (Pipe i o m r) o
| NeedInput (i -> Pipe i o m r)
| Done r
| PipeM (m (Pipe i o m r))

runPipe :: Monad m => Pipe () Void m r -> m r
runPipe (HaveOutput _ o) = absurd o
runPipe (NeedInput c) = runPipe (c ())
runPipe (Done r) = return r
runPipe (PipeM mp) = mp >>= runPipe
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Running the Conduit in Parallel

Defining our own runConduit function
runConduitWithWork :: ConduitT () (WorkOr Void) IO r -> IO r

We need one more case for runPipe:
runPipe :: Pipe () (WorkOr Void) IO r -> IO r
runPipe (HaveOutput _ (WOValue o)) = absurd o
runPipe (HaveOutput pipe (WOWork w)) = -- Handle work
runPipe (NeedInput c) = runPipe (c ())
runPipe (Done r) = return r
runPipe (PipeM mp) = mp >>= runPipe
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Running the Conduit in Parallel

How to parallelize runPipe?

1. Put the Pipe in an MVar.

2. Any thread can run the pipe until it finds a WOWork

3. Put the remaining Pipe back and evaluate the WOWork

Running the pipe should be cheap, as it happens in the critical
section.
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Running the Conduit in Parallel
runConduitWithWork

:: Int -> ConduitT () (WorkOr Void) IO r -> IO r
runConduitWithWork numThreads (ConduitT pipe) = do

pipeVar <- newMVar $ injectLeftovers $ pipe Done
threads <- replicateM numThreads $ Async.async $ runWorker pipeVar
snd <$> Async.waitAnyCancel threads

runWorker :: MVar (Pipe () (WorkOr Void) IO r) -> IO r
runWorker pipeVar = loop

where
-- Take the pipe variable, so that no one else can.
loop = takeMVar pipeVar >>= withPipe

withPipe = \case
HaveOutput pipe (WOWork w) -> do
-- Put back the (modified) pipe for someone else to use, because we have work to do!
putMVar pipeVar pipe
w
loop

-- All the below is the same as 'runPipe' and is done within the critical section.
-- This includes evaluation of upstream and monadic effects in the conduit.
HaveOutput _ (WOValue o) -> absurd o
NeedInput c -> withPipe (c ())
Done r -> pure r
PipeM mp -> mp >>= withPipe
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How do we know if there is work?
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How do we know if there is work?

– Thread 1 deduplicates block 1

– Thread 2 deduplicates block 2

– Thread 3 cannot yet join the 2 blocks
What happens if we pull the join before the input is ready?

WONothingYet

We don’t want to block.
– Makes time-measurement and core scheduling harder

– We cannot make explicit choices what work to forward
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Zipping streams
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Zipping streams

LEFT RIGHT
Has WONothingYet Has WONothingYet Forward a WONothingYet
Has WOWork _ Forward the WOWork
Has WONothingYet Has WOWork Forward the WOWork
Has a stream _ Forward the stream
Has WONothingYet Has a stream Forward a WONothingYet
Is Done Has WONothingYet Forward a WONothingYet
Has WONothingYet Is Done Forward a WONothingYet
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Conclusion
Pros
– Simple, but covers most use cases
– Little overhead
– Evaluation strategy aligns with GHC runtime
– Your custom runConduitWithWork could dynamically scale the
number of used cores

Cons
– Sometimes feels bolted on to conduit
– Components don’t know if the downstream currently
prefers values, or more work
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