
1

Parallel Streaming

Yorick Sijsling & Joris Burgers

June 5, 2023

2

Channable

– Channable provides tools to process product data

– For example, customers can connect their webshop, and
configure the tool to generate Google ads based on their
product data

– Team of 20 mostly-Haskell developers (we’re hiring[1])

3

Motivation

– Users can specify rules to process their data

– Rule processing engine handles 1.7 million items per second

– Jobs were initially single threaded:
– Simple
– Parallelism from running multiple jobs
– Easier to optimize
– Efficient use of resources (no overhead frommultithreading)
– Good for high overall throughput

– Some jobs are just too big, taking minutes or even hours

– Task: add in-job parallelism!
– We also wrote a blog[2] about this

4

Overview

– Rationale for streaming

– Quick introduction to conduit

– Adding parallelism

– Parallel aggregations

– Running conduits with parallelism

– Zipping conduits with parallelism

5

Rule processing
5

6

What’s in a job

The rule processing engine runs different types of jobs.
We’ll focus on one type that:
– Starts with a data set in memory (akin to [Item])

– Runs a bunch of actions

– Ends with a data set in memory

7

Storing items

We don’t actually use [Item] as an in-memory data set:
– Can’t do efficient indexing or slicing
– Bad for garbage collection (GC)

Assume that StoredItems is some efficient, GC-friendly way to
store items, for instance using:
– Unboxed Vectors
– Vectors in compact regions (see our blog post[3])
– Or serialized data on disk, as a memory-mapped file

evalActionsJob :: [Action] -> StoredItems -> _ StoredItems

8

Evaluating actions

Actions come in the form of an AST:
data Action
= Map Expression
| Filter Expression
| SortOn Expresssion
| DeduplicateOn Expresssion
...

evalAction :: Action -> [Item] -> _ [Item]

9

Evaluating actions

Creating a StoredItems after each action is too expensive.

When possible, we want to use streaming
– Each Item is sent through multiple actions, before starting on
the next Item

– This limits the amount of live data outside of StoredItems

– Good fit for chains of map and filter

10

Evaluating actions

Laziness allows [Item] to work as a stream.

Each Item is only produced when the consumer needs it.

We use a dedicated library conduit[4] instead, to get several
benefits:
– Interleaving IO between items. (yield an item, do some IO,
yield next item, ...)

– A nice streaming-specific interface
– (Hopefully) more reliable stream fusion

evalAction :: Action -> ConduitT Item Item IO ()

11

Conduits
11

12

Conduits
The ConduitT type is the core of the conduit library.

A ConduitT i o m r is a stream processor:
– It consumes a stream of values of type i

– It produces a stream of values of type o

– It can run effects in monad m

– At the end, it produces a single r

13

Conduits

> runConduit (C.yieldMany [1,2,3] .| C.map (*2) .| C.sum)
12

C.yieldMany :: Monad m => [o] -> ConduitT i o m ()
C.map :: Monad m => (i -> o) -> ConduitT i o m ()
C.sum :: Monad m => ConduitT Int o m Int

(.|) :: Monad m => ConduitT a b m ()
-> ConduitT b c m r
-> ConduitT a c m r

runConduit :: Monad m => ConduitT () Void m r -> m r

14

Conduits

> runConduit (C.yieldMany [1,2,3] .| C.map (*2) .| C.sum)
12

C.yieldMany :: Monad m => [o] -> ConduitT i o m ()
C.map :: Monad m => (i -> o) -> ConduitT i o m ()
C.sum :: Monad m => ConduitT Int o m Int

(.|) :: Monad m => ConduitT a b m ()
-> ConduitT b c m r
-> ConduitT a c m r

runConduit :: Monad m => ConduitT () Void m r -> m r

15

Conduits

> runConduit (C.yieldMany [1,2,3] .| C.map (*2) .| C.sum)
12

C.yieldMany :: Monad m => [o] -> ConduitT i o m ()
C.map :: Monad m => (i -> o) -> ConduitT i o m ()
C.sum :: Monad m => ConduitT Int o m Int

(.|) :: Monad m => ConduitT a b m ()
-> ConduitT b c m r
-> ConduitT a c m r

runConduit :: Monad m => ConduitT () Void m r -> m r

16

Adding parallelism
16

17

Streams of work and values
We use amixed stream of values and parallel work units.
Stream values use this type:
data WorkOr a = WOValue a | WOWork (IO ()) | WONothingYet

– For example, ConduitT () (WorkOr Item) IO () produces both
parallel work units and items

– The IO () is a parallel work unit that:
– Can run independent of everything else, in any order
– Should be run at most once

– If a conduit has to wait for work to be completed, it can
yield a WONothingYet

18

Streams of work and values
We use amixed stream of values and parallel work units.
Stream values use this type:
data WorkOr a = WOValue a | WOWork (IO ()) | WONothingYet

– For example, ConduitT () (WorkOr Item) IO () produces both
parallel work units and items

– The IO () is a parallel work unit that:
– Can run independent of everything else, in any order
– Should be run at most once

– If a conduit has to wait for work to be completed, it can
yield a WONothingYet

19

Streams of work and values
We use amixed stream of values and parallel work units.
Stream values use this type:
data WorkOr a = WOValue a | WOWork (IO ()) | WONothingYet

– We don’t need a separate task queue

– Work is produced on demand

– Supports deterministic ordering of values

20

Example: Parallel streams

type ParallelStream = ConduitT () Item IO ()
yieldParallel :: ChunkSize -> [Item] -> ConduitT i ParallelStream IO ()
sinkItemsInParallel :: ConduitT ParallelStream (WorkOr o) IO [Item]

This sinkItemsInParallel function:
– Converts each ParallelStream to a WOWork that stores the output
– Main conduit waits on all outputs and concatenates

21

Aggregations
21

22

Aggregations

deduplicate :: Ord key => (Item -> key) -> [Item] -> [Item]

Deduplication deduplicates on the key.
> deduplicate fst [(6, "a"), (3, "b"), (2, "c"), (5, "d"), (2, "e")]
[(2, "c"), (3, "b"), (5, "d"), (6, "a")]

For any duplicate key, takes the leftmost item.

23

Aggregations

deduplicate :: Ord key => (Item -> key) -> [Item] -> [Item]

Deduplication deduplicates on the key.
> deduplicate fst [(6, "a"), (3, "b"), (2, "c"), (5, "d"), (2, "e")]
[(2, "c"), (3, "b"), (5, "d"), (6, "a")]

For any duplicate key, takes the leftmost item.

24

Aggregations

Arregations can be generalized
aggregation
:: Ord key
=> (Item -> Item -> [Item])
-> (Item -> key)
-> [Item]
-> [Item]

We only need to implement one (parallel) aggregation function
deduplication = aggregation (\l _ -> [l])
sort = aggregation (\l r -> [l, r])
deduplicateRemove = aggregation (_ _ -> [])
sum = aggregation (\l r -> [l + r])
deduplicateRemove has a bug, can you find it?

25

Parallel aggregations

Parallel deduplication can be implemented as a merge-sort.
1. Split the input in 2 blocks

2. Sort the individual blocks

3. Deduplicate the sorted blocks, using the provided function
for any key collisions

4. Join the sorted, deduplicated blocks

26

Parallel aggregations

type Block = Vector Item

processBlock
:: MVar Block
-> ParallelStream
-> WorkOr a

processBlock resultPlaceholder stream = WOWork $ do
result <- sort stream >>= deduplicate
putMVar resultPlaceholder result

27

Parallel aggregations

joinBlocks
:: MVar Block
-> Block
-> Block
-> WorkOr a

joinBlocks resultPlaceholder leftBlock rightBlock = WOWork $ do
result <- join leftBlock rightBlock
putMVar resultPlaceholder result

28

Parallel aggregations

29

Parallel aggregations

Summary
– Aggregations can be implemented as a parallel merge-sort

– We produce intermediate work units, only producing items
after all work has completed

– Work is produced on demand

30

Running the Conduit
30

31

Running the Conduit

The ConduitT type is the core of the conduit library.

A ConduitT i o m r is a stream processor:
– It consumes a stream of values of type i

– It produces a stream of values of type o

– It can run effects in monad m

– At the end, it produces a single r

32

Running the Conduit

The ConduitT type is the core of the conduit library.

A ConduitT i o m r is a stream processor:
– It consumes a stream of values of type i

– It produces a stream of values of type o

– It can run effects in monad m

– At the end, it produces a single r

33

What’s in a Conduit?
Simplified answer: a Pipe
A Pipe represents the current state of the Conduit

data Pipe i o m r
= HaveOutput (Pipe i o m r) o
| NeedInput (i -> Pipe i o m r)
| Done r
| PipeM (m (Pipe i o m r))

runPipe :: Monad m => Pipe () Void m r -> m r
runPipe (HaveOutput _ o) = absurd o
runPipe (NeedInput c) = runPipe (c ())
runPipe (Done r) = return r
runPipe (PipeM mp) = mp >>= runPipe

34

What’s in a Conduit?
Simplified answer: a Pipe
A Pipe represents the current state of the Conduit

data Pipe i o m r
= HaveOutput (Pipe i o m r) o
| NeedInput (i -> Pipe i o m r)
| Done r
| PipeM (m (Pipe i o m r))

runPipe :: Monad m => Pipe () Void m r -> m r
runPipe (HaveOutput _ o) = absurd o
runPipe (NeedInput c) = runPipe (c ())
runPipe (Done r) = return r
runPipe (PipeM mp) = mp >>= runPipe

35

Running the Conduit in Parallel

Defining our own runConduit function
runConduitWithWork :: ConduitT () (WorkOr Void) IO r -> IO r

We need one more case for runPipe:
runPipe :: Pipe () (WorkOr Void) IO r -> IO r
runPipe (HaveOutput _ (WOValue o)) = absurd o
runPipe (HaveOutput pipe (WOWork w)) = -- Handle work
runPipe (NeedInput c) = runPipe (c ())
runPipe (Done r) = return r
runPipe (PipeM mp) = mp >>= runPipe

36

Running the Conduit in Parallel

Defining our own runConduit function
runConduitWithWork :: ConduitT () (WorkOr Void) IO r -> IO r

We need one more case for runPipe:
runPipe :: Pipe () (WorkOr Void) IO r -> IO r
runPipe (HaveOutput _ (WOValue o)) = absurd o
runPipe (HaveOutput pipe (WOWork w)) = -- Handle work
runPipe (NeedInput c) = runPipe (c ())
runPipe (Done r) = return r
runPipe (PipeM mp) = mp >>= runPipe

37

Running the Conduit in Parallel

How to parallelize runPipe?

1. Put the Pipe in an MVar.

2. Any thread can run the pipe until it finds a WOWork

3. Put the remaining Pipe back and evaluate the WOWork

Running the pipe should be cheap, as it happens in the critical
section.

38

Running the Conduit in Parallel
runConduitWithWork

:: Int -> ConduitT () (WorkOr Void) IO r -> IO r
runConduitWithWork numThreads (ConduitT pipe) = do

pipeVar <- newMVar $ injectLeftovers $ pipe Done
threads <- replicateM numThreads $ Async.async $ runWorker pipeVar
snd <$> Async.waitAnyCancel threads

runWorker :: MVar (Pipe () (WorkOr Void) IO r) -> IO r
runWorker pipeVar = loop

where
-- Take the pipe variable, so that no one else can.
loop = takeMVar pipeVar >>= withPipe

withPipe = \case
HaveOutput pipe (WOWork w) -> do
-- Put back the (modified) pipe for someone else to use, because we have work to do!
putMVar pipeVar pipe
w
loop

-- All the below is the same as 'runPipe' and is done within the critical section.
-- This includes evaluation of upstream and monadic effects in the conduit.
HaveOutput _ (WOValue o) -> absurd o
NeedInput c -> withPipe (c ())
Done r -> pure r
PipeM mp -> mp >>= withPipe

39

How do we know if there is work?

40

How do we know if there is work?

– Thread 1 deduplicates block 1

– Thread 2 deduplicates block 2

– Thread 3 cannot yet join the 2 blocks
What happens if we pull the join before the input is ready?

WONothingYet

We don’t want to block.
– Makes time-measurement and core scheduling harder

– We cannot make explicit choices what work to forward

41

How do we know if there is work?

– Thread 1 deduplicates block 1

– Thread 2 deduplicates block 2

– Thread 3 cannot yet join the 2 blocks
What happens if we pull the join before the input is ready?
WONothingYet

We don’t want to block.
– Makes time-measurement and core scheduling harder

– We cannot make explicit choices what work to forward

42

How do we know if there is work?

– Thread 1 deduplicates block 1

– Thread 2 deduplicates block 2

– Thread 3 cannot yet join the 2 blocks
What happens if we pull the join before the input is ready?
WONothingYet

We don’t want to block.
– Makes time-measurement and core scheduling harder

– We cannot make explicit choices what work to forward

43

Zipping streams
43

44

Zipping streams

LEFT RIGHT
Has WONothingYet Has WONothingYet Forward a WONothingYet
Has WOWork _ Forward the WOWork
Has WONothingYet Has WOWork Forward the WOWork
Has a stream _ Forward the stream
Has WONothingYet Has a stream Forward a WONothingYet
Is Done Has WONothingYet Forward a WONothingYet
Has WONothingYet Is Done Forward a WONothingYet

45

Conclusion
Pros
– Simple, but covers most use cases
– Little overhead
– Evaluation strategy aligns with GHC runtime
– Your custom runConduitWithWork could dynamically scale the
number of used cores

Cons
– Sometimes feels bolted on to conduit
– Components don’t know if the downstream currently
prefers values, or more work

46

References
– Haskell jobs at channable.

https://jobs.channable.com/o/haskell-software-engineer-3.

– Parallel streaming in haskell, 2023.
https://www.channable.com/tech/
parallel-streaming-in-haskell-part-1-fast-efficient-fun.

– Lessons in managing haskell memory, 2020.
https://www.channable.com/tech/lessons-in-managing-haskell-memory.

– Conduit.
https://hackage.haskell.org/package/conduit-1.3.5.

https://jobs.channable.com/o/haskell-software-engineer-3
https://www.channable.com/tech/parallel-streaming-in-haskell-part-1-fast-efficient-fun
https://www.channable.com/tech/parallel-streaming-in-haskell-part-1-fast-efficient-fun
https://www.channable.com/tech/lessons-in-managing-haskell-memory
https://hackage.haskell.org/package/conduit-1.3.5

47

Parallel Streaming

Yorick Sijsling & Joris Burgers

June 5, 2023

	Rule processing
	Conduits
	Adding parallelism
	Aggregations
	Running the Conduit
	Zipping streams
	Conclusion

